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A stack of thin, closely spaced conducting foils has been investigated by Lund et al. [1] as a
passive focusing lens for intense ion beams. The foils mitigate space-charge defocusing forces to
enable the beam self-magnetic field to focus. In this study, we analyze possible degradation of
focusing due to scattering of beam ions resulting from finite foil thickness using an envelope model
and numerical simulations with the particle-in-cell code WARP. Ranges of kinetic energy where
scattering effects are sufficient to destroy passive focusing are quantified. The scheme may be
utilized to focus protons produced in intense laser-solid accelerator schemes. As an example, the
spot size of a initially collimated 30 MeV proton beam with initial rms radius 200 µm, perveance
Q = 1.8×10−2, and initial transverse emittance εx,rms = 0.87 mm mrad propagating through a stack
of 6.4 µm thick foils, spaced 100 µm apart, gives a 127.5 µm spot with scattering and a 81.0 µm
spot without scattering, illustrating the importance of including scattering effects.

PACS numbers: 29.27.Bd,41.75.-i,52.59.Sa

I. INTRODUCTION

Charged particle beams tend to radially expand un-
der space-charge forces and thermal forces if no applied
focusing fields constrain their transverse dynamics[2, 3].
Active focusing systems such as solenoids or quadrupole
magnets are usually used. However, passive focusing
schemes have been investigated which employ material
structures to reduce self-fields. These include: Metal-
lic conic guide tubes for electron focusing[4] and ion
focusing[5], and stacks of thin foils for electron focusing
[6]. Recently, it has been shown that ion beams propa-
gating through a stack of thin metallic foils can be mag-
netically self-focused due to the mitigation of their elec-
trostatic repulsion[1]. This novel passive focusing scheme
opens the possibility of collimating or focusing ion beams
to a small spot size since the focusing becomes stronger
as the beam radius reduces. Applications may include
focusing intense beams on the X-target for fast ignition-
driven fusion energy[7], injectors for compact proton ac-
celerators for tumor therapy [8], and ion beam-driven
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warm dense matter studies[9]. The stack of thin foils can
be made from aluminum and manufactured at low cost.
Foil stacks can be used for transverse focusing of laser-
produced proton beams[10] where intense space-charge
has been limiting applications[11]. This can also re-
move electrons co-moving with the protons, without large
degradations in beam brightness thereby addressing an-
other issue limiting applications. The most studied laser-
based ion beam production process, the targel-normal-
sheath-acceleration (TNSA) model[11], can achieve pro-
ton beams with a broad energy spectrum up to a few
dozen MeV and whose total current is in the kA range.

Ongoing research based on alternative laser-based ion
beam production processes - e.g. radiation pressure ac-
celeration, collisionless shock acceleration, breakout af-
terburner, acceleration in near-critical and underdense
plasmas, resistively enhanced acceleration (see Ref. [10])
- offers beams with promising characteristics (e.g. mono-
energetic, higher energy and/or higher current) whose
space-charge could be successfully controlled by our stack
of thin foils.

An idealized analytical envelope theory was previously
developed by Lund et al.[1] and agrees with particle-in-
cell simulations. This guided an ongoing campaign of
experiments, described in Ref. [12] designed to study the
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mitigation of the defocusing self-electric field of proton
beams. These proton beams were produced by intense
short-pulse lasers and accelerated by the target-normal-
shealth-acceleration (TNSA) process[11] at the TITAN
laser facility at GSI and the JUPITER laser facility at
Lawrence Livermore National Laboratory[13].

This paper extends the idealized analytical envelope
theory of Ref. [1], which assumed infinitely thin foils, to
include foil-induced scattering and kinetic energy loss as-
sociated with finite thickness foils. This scattering causes
random deflections in the distribution of particle angles
and results in emittance growth that can degrade beam
quality [2, 3, 14, 15]. The beam ions also deposit a frac-
tion of their kinetic energy into the foils, evaporating the
foils after penetration of the beam. The stack of foils is
therefore a single-use lens. However, estimates show that
the foils remain at near solid density during the transit of
the beam within the stack because the hydrodynamical
expansion timescale is much longer than the beam tran-
sit timescale[1, 12]. Besides, the ion beam experiences
straggling due to statistical kinetic energy losses into the
foils, causing momentum spread and therefore chromatic
aberrations as the passive focusing depends on the mo-
mentum of the beam ions. Straggling is neglected in our
present mono-energetic study: the emphasis is on the an-
gular deflections of the beam ions and the mean kinetic
energy loss. Nevertheless, straggling must be taken into
account when kinetic energy loss is important. Ref. [1] in-
cludes transverse nonlinear effects between the foils in the
envelope equations and indicates that modest changes
in the radial structure of the beam associated with geo-
metric aberrations do not significantly alter the passive
focusing. Numerical simulations (in which the profile is
allowed to evolve self-consistently) show reasonably good
agreement with these assumptions.

This paper is organized as follows. In Sec. II,
foil-induced scattering is treated analytically using the
Rutherford scattering model and numerically using the
Monte-Carlo particle simulation code SRIM [16]. In
Sec. III, the envelope equations are derived and numer-
ically solved for several foil and beam configurations to
highlight cases for which foil-induced scattering becomes
a dominant limitation of the transverse focusing. In
Sec. IV, a module to model foil-induced scattering and
kinetic energy loss is implemented in the particle-in-cell
code WARP[17] and is applied to numerically test the en-
velope theory of Sec. III. Good agreement between the
envelope theory and numerical model is found.

II. SCATTERING

A. Single particle model

A single beam ion of velocity vb, charge number Zb,
mass mb, and kinetic energy Eb = (γb − 1)mbc

2, with
γb = (1 − β2

b )−1/2, βb = vb/c, and c the speed of light
in vacuum, is assumed to penetrate through a homoge-

nous thin foil of thickness ∆f . The foil is made of a
single atomic species of charge number Zf , mass mf

and mass density ρf . The nuclei and electrons of the
foil alter the dynamics of the beam ions differently: the
electrons can absorb an appreciable amount of energy
from the beam ions without causing significant angu-
lar deflections, whereas the nuclei absorb little energy
but cause significant angular deflections of the beam ions
due to their greater electric charge [18]. In this section,
the energy loss of the beam ions due to the collisions
with atomic electrons is neglected. This is consistent for
thin foils with large incident beam kinetic energy [19].
Small kinetic energy losses within one foil are analyzed
in Sec. II B. Results found there justify the constant en-
ergy assumption.

Because the interaction between the beam ions and the
foil nuclei is primarily electrostatic, the differential scat-
tering cross section dσ/dΩ between the incoming beam
ion and a stationary foil nucleus, where the solid angle
dΩ = sin θdθdφ (θ is the normal angle, taken as the de-
flection angle, φ is the azimuthal angle in spherical-polar
coordinates), is governed by the small-angle Rutherford
cross-section[18]

dσ

dΩ
=

(
2ZbZfe

2

4πε0mec2

)2
1− β2

b

β4
b

1

θ4
. (1)

Here, e is the elementary electric charge, and ε0 the vac-
uum permittivity. Here and henceforth, large-angle scat-
tering is ignored: those events are rare[18]. Eq. (1) is
valid between a small cutoff angle

θmin =
~
pba
'
Z

1/3
f

192

mec

mbvb
(2)

due to electrostatic screening from bound electrons, and
a large cut-off angle

θmax =
~
pbR

' 274

A
1/3
f

mec

mbvb
(3)

that is due to the finite radius R of the nucleus. In
Eqs. (2) and (3), a ' 1.4a0Z

−1/3
f is the length scale of the

screening obtained by a rough fit to the Thomas-Fermi
atomic potential, a0 the Bohr radius, ~ = h/(2π) where
h is Planck’s constant, Af is the mass number of the nu-
cleus, me is the mass of the electron, and pb = mbvb is
the momentum of a assumed non-relativistic beam ion.
We approximate Af ' 2Zf .

The total scattering cross-section is

σtot =

∫ 2π

0

dφ

∫ θmax

θmin

dθ sin θ
dσ

dθ
. (4)

A beam ion traversing a thin foil undergoes many small
angle deflections and emerges with a small angular de-
flection due to the cumulative statistical superposition
of many small angle collisions. Assuming the number of
collisions is sufficient for Gaussian statistics (verified a
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FIG. 1: Schematic of a beam ion at velocity v that has been
deflected by a normal angle θ from the axial direction z. The
angular deflections θx in the (x-z) plane and θy in the (y-z)
plane are represented.

posteriori), the central limit theorem applies to the net
deflection angle distribution. This implies that the net
deflection angle is Gaussian distributed, centered around
0, with variance 〈θ2〉 given by

〈θ2〉 ≡
∫ 2π

0
dφ
∫ θmax

θmin
dθ sin θ θ2 dσ

dθ∫ 2π

0
dφ
∫ θmax

θmin
dθ sin θ dσdθ

. (5)

The beam ion undergoes N = nfσtot∆f collisions after
penetration of a foil of thickness ∆f and atomic density
nf . Each of these collisions causes a random deflection
θ that follows the above-mentioned distribution.We take
z as the axial coordinate normal to the foil and x, y
as the transverse coordinates. Equation (5) corresponds
to a deflection θx in the (x − z) plane and a deflection
θy in the (y − z) plane such that θ2 = θ2

x + θ2
y in the

small angle approximation (see Fig. 1). By symmetry,
the mean and the variance of the total deflection angle
at foil exit in the (x-z) and the (y-z) plane are therefore
0 and 〈θ2

tot〉 ' 〈θ2
x,tot〉 + 〈θ2

y,tot〉 = 2〈θ2
x,tot〉 because of

symmetry, and with 〈θ2
x,tot〉 and 〈θ2

y,tot〉 the variance of
total deflection angle at foil exit in the (x−z) and (y−z)
planes. If β2

b � 1, the rms deflection angle in the (x− z)
and (y − z) planes reduce to

〈θ2
x,tot〉1/2 = 〈θ2

y,tot〉1/2 = G0

∆
1/2
f

Eb
, (6a)

G0 =

[
2πnf

(
ZbZfe

2

4πε0

)2

ln(204Z
−1/3
f )

]1/2

. (6b)

The argument in the logarithm in Eq. (6b) depends on
the choice of cut-off angle θmin and θmax employed which
is somewhat arbitrary. However, for our present analy-
sis in which the physics of scattering has been idealized
(e.g electron screening is partially omitted), these spe-
cific cut-offs are sufficient. What is of interest here is the
scaling of the rms deflection angle distribution 〈θ2

tot〉1/2

in Eq. (6a). The scaling is compared and verified by the
Monte-Carlo code SRIM in Sec. II B. The code includes
a wider range of physical phenomena (more details can
be found in Sec. II B). Eq. (6a) shows that: (i) higher
energy beam ions are less likely to be deflected because of
their stiffer trajectories, (ii) higher charge states of the
beam ions and higher charged foil nuclei yield broader
deflections because the Coulomb interaction is stronger,
and (iii) ions undergo larger deflections in denser and
thicker foils.

B. Monte-Carlo Simulations

The multiple small-angle scattering of beam ions in-
duced by their penetration through a foil is simulated us-
ing the Monte-Carlo code SRIM (Stopping and Range of
Ions in Matter)[16]. SRIM contains much richer physics
than the analytical model used in Sec. II A because it
computes the 3D trajectory of a single beam ion through
rectangular layers of materials using a quantum mechani-
cal treatment of ion-atom collisions and with adjustments
for consistency with experimental data; it also includes
screened Coulomb collisions between the beam ion and
the foil atoms due to the overlapping electron shells, elec-
tron excitations, plasmons, and effective charge Z∗f effects
where Z∗f < Zf due to the collective electron cloud, and
large angle scattering. Statistical energy losses, angular
scattering, kinetic effects related to energy losses from
target damage, sputtering, ionization, and phonon pro-
duction are also accounted for.

SRIM simulation results for protons with three differ-
ent initial beam kinetic energies, Eb = 2 MeV, 5 MeV and
10 MeV, penetrating a single foil of thickness ∆f ranging
from 0.125 µm to 5 µm are shown in Figs. 2 and 3. The
material of the foil is solid aluminum (Zf = 13, ρ = 2.7
g.cm−3). For each initial Eb and ∆f , Np = 3000 protons
(Zb = 1) are tracked and for each proton i, the loss of
kinetic energy ∆Ei and the deflection angle in the trans-
verse direction θtot,i after penetrating the single foil are
evaluated. Because of axial symmetry, the deflection an-
gles in both x- and y-directions θx,tot,i and θy,tot,i are sta-
tistically equal. The average of a quantity A is denoted

〈A〉 = 1/Np
∑Np
i=1Ai with Ai the individual value for the

i-th proton. SRIM also takes into account rare large an-
gle scatterings, which are not relevant for the bulk of the
proton distribution. In our averages, we reject protons
whose deflection angle at the exit of the foil is more than
5 standard deviations from the mean. We refer to these
averages as “smoothed.” We compute, for each initial Eb
and ∆f , the average kinetic energy loss 〈∆E〉, the av-
erage transverse angular deflection and average squared
transverse angular deflection in the x-direction, 〈θx,tot〉
and 〈θ2

x,tot〉, and in the y-direction, 〈θy,tot〉 and 〈θ2
y,tot〉.

The smoothed average kinetic energy loss 〈∆E〉, as a
function of foil thickness ∆f , is plotted in Fig. 2. As ex-
pected, 〈∆E〉 is small for small ∆f and high Eb. In the
case where Eb = 5 or 10 MeV, protons lose a negligible
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amount of their initial kinetic energy (2% or less), even
for foils up to 5 µm. However, the 2 MeV protons lose
close to 8% of their kinetic energy after penetrating 5 µm
of solid aluminum. The assumption of constant kinetic
energy for beam protons becomes relatively poor for µm
thick foils with a proton energy lower than 2 MeV. Al-
though the proton kinetic energy can be taken to be con-
stant within one foil, it cannot be assumed to be constant
in the full stack of foils because the small decrements in
kinetic energy in each foil can result in a substantial net
total energy loss when penetrating many foils.
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FIG. 2: (Color) Dots give smoothed (large angle events re-
jected) proton kinetic energy loss computed with SRIM, av-
eraged over Np = 3000 protons with initial kinetic energy
Eb as indicated after penetration of a solid aluminum foil of
thickness ∆f . Smoothing eliminates less than 0.2% of the
simulated protons in the worst case with Eb = 2 MeV and
∆f = 5µm. Solid lines correspond to a linear fit of the data
for initial kinetic energies Eb. Brown, blue and red colors
represent initial kinetic energies Eb = 2, 5 and 10 MeV.

As expected, there is zero mean angular deflection:
〈θx,tot〉 = 〈θy,tot〉 = 0 (plot not shown). The rms deflec-

tion angle 〈θ2
x,tot〉1/2(= 〈θ2

y,tot〉1/2 because of symmetry)
as a function of foil thickness ∆f from the smoothed dis-
tribution is plotted in Fig. 3. A least-square fit based on
the ∆f and Eb dependance of Eq. (6) and the results of
the Monte-Carlo simulations shows that

〈θ2
x,tot〉1/2 = GSRIM

∆
1/2
f

Eb
, (7)

with GSRIM = 9.8×10−3 MeVµm−1/2. In contrast, using
Zb = 1, Zf = 13 and nf = 6.02×1028 m−3, the coefficient

G0 from Eq. (6) gives G0 = 2.4 × 10−2 MeVµm−1/2 for
aluminum which is 2.4 times higher than GSRIM. Such a
discrepancy may be justified by the richer models that
SRIM employed compared to the model in Sec. II A.
Equation (7), is employed in the analysis in the follow-
ing sections since it should be more accurate. Note also
that for Eb = 5 MeV and 10 MeV, Eq. (7) produces an
excellent fit to the SRIM simulation results. In contrast,
data slightly departs from the fit for 2 MeV, because the
significant loss of kinetic energy for lower energy protons
results in enhanced angular scattering.
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FIG. 3: (Color) Dots give smoothed (large angle events re-
jected) rms deflection angle computed with SRIM, averaged
over NP = 3000 protons with initial ion kinetic energy Eb
after penetration of a solid aluminum foil of thickness ∆f .
Solid lines correspond to fits of the data based on Eq. (6) us-
ing a least-squared method for each initial kinetic energy Eb.
Brown, blue and red colors respectively represent the initial
kinetic energies of Eb = 2, 5 and 10 MeV.

Methods presented in this section using SRIM can be
readily applied to other foil materials and a variety of
incident ions.

III. TRANSVERSE ENVELOPE MODEL

This section closely follows the treatment in Ref. [1].
First, the beam model, the geometry of the foil system,
and the beam fields are described, and then, particle
equations of motion both between two foils and within
a foil are derived. The particle equations of motion are
averaged to obtain an envelope equation for the trans-
verse beam radius. Illustrative examples of scattering
effects on beam propagation are presented in Sec. III E.

A. Geometry and Beam Model

The focusing system (see Fig. 4) is treated as a two-foil
system separated by length L, perpendicular to the axial
z axis, centered at z = 0 and infinite in the transverse
directions x and y. This model requires that the char-
acteristic transverse beam radius is much smaller than
the transverse extent of the foils. Each foil has finite
thickness ∆f : the beam dynamics is therefore treated
differently between the foils and within a foil. The foils
are assumed to be grounded conductors.

The ion beam is assumed to be single-species, mono-
energetic with kinetic energy Eb, mass mb and charge
q = Zbe, filling the space between many foils. The axial
extent of the beam is assumed to be long compared to
its transverse size. We describe the beam with a Vlasov
model and beam distribution function fb(x⊥,p, z). Be-
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FIG. 4: (Color) Axisymmetric beam between two conducting
foils located at z = ±L/2. The foils are grounded.

cause the beam is assumed mono-energetic, the axial co-
ordinate z can be chosen as an independent variable, in
place of the time t.

The beam charge density ρb = q
∫
d3p fb is assumed

to be axisymmetric (∂ρb/∂θ = 0). The z-variation of ρb
is neglected between two adjacent foils and within a foil,

i.e. ρb = ρb(r), where r =
√
x2 + y2. However, ρb(r) is

assumed to vary with z on length scales larger that the
inter-foil spacing.

The beam line charge λb = 2π
∫ +∞

0
dr rρb(r) is pro-

portional to the beam current Ib with Ib = βbcλb. By
definition, the beam current density is Jb = q

∫
d3p vfb

with v the particle velocity. The beam is assumed to
be mostly axial, Jb ' ẑ βbcρb(r). Here, βbc is the axial
beam velocity consistent with the axial particle energy
Eb = (γb − 1)mc2 where γb = 1/

√
1− β2

b . The radial
shape of the charge density ρb is assumed not to change
form throughout the stack of foils (in z) while the radial
extent of the beam charge density is allowed to vary in
z. This idealization of self-similar evolution is consistent
with the conservation of the linear charge density (λ =
const.) under radial self-field forces[1].

The transverse (⊥) statistical average of a quantity A
over the beam distribution fb(x,p, z) is defined by

〈A〉⊥ ≡
∫
d2x⊥

∫
d3p A(x⊥,p, z)fb∫
d2x⊥

∫
d3p fb

, (8)

where x⊥ = x̂x + ŷy denotes the transverse coordinate.
The z-varying radial extent of the beam charge density

is measured by the rms width σx(z) ≡ 〈x2〉1/2⊥ .

B. Self-field solutions

In this section, the beam electric and magnetic fields
are explicitly solved for the case of an axisymmetric
beam profile. We employ the quasi-static approximation:
∂E/∂t ' 0 and ∂B/∂t ' 0 in Maxwell’s equations. The
boundary conditions are set by the conducting foils. Er

is screened by the conducting foils: Er = 0 within the
foils, and Bθ remains unmodified by the foils. Details of
the derivations can be found in Ref. [1].

a. Self-magnetic field between two foils Using a po-
tential vector A such that B = ∇×A and the Coulomb
gauge ∇ · A = 0, A ' ẑAz and ∇2Az ' −µ0βbcρb(r).
Here, µ0 is the permeability of free space and c2 =
1/(µ0ε0). E can be expressed as the gradient of an
electrostatic potential in vacuum φv such that ∇2φv =
−ρb(r)/ε0. The integration of the two previous equa-
tions using relevant radial boundary conditions yield
Az(r) ' βbφv(r)/c. The self-magnetic field has there-
fore only an azimuthal component

B ' θ̂Bθ(r) ' −θ̂
βb
ε0cr

∫ r

0

dr̃ r̃ρb(r̃). (9)

b. Self-magnetic field within a foil As the thickness
of the foils ∆f is small compared to the inter-foil spacing
L (∆f/L � 1), B is assumed constant and equal to the
self-magnetic field at the surface of the foils.

c. Self-electric field between two foils E can be ex-
pressed as the gradient of an electrostatic potential φg
such that E = −∇φg and

∇2φg = −ρb(r)
ε0

. (10)

In contrast to φv, φg takes into account the boundary
values φg = 0 on the foils at z = ±L/2. Ref. [1] provides
the derivation of the solution to Eq. (10):

φg(r, z) =
1

ε0

∫ ∞
0

dk

k

cosh(kL/2)− cosh(kz)

cosh(kL/2)
J0(kr)

×
∫ ∞

0

dr̃ r̃ρb(r̃)J0(kr̃).

(11)

Here, J0 denotes a 0th order ordinary Bessel function.
It was found in Ref. [1] that the radial Er = −∂φg/∂r
and axial Ez = −∂φg/∂z field components could, to a
good approximation, be replaced by the z-average values
between the foils

Er,g(r) =

∫ L/2

−L/2

dz

L
Er(r, z)

=
1

ε0

∫ ∞
0

dk

[
1− 2

kL
tanh(kL/2)

]
J1(kr)

×
∫ ∞

0

dr̃ r̃ρb(r̃)J0(kr̃),

Ez,g(r) =

∫ L/2

−L/2

dz

L
Ez(r, z) = 0.

(12)

d. Self-electric field within a foil The foils are as-
sumed to be perfect conductors so that E = 0.
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C. Particle Dynamics

The particle dynamics between the thin foils has been
previously treated[1]. This section extends the analysis
to include the deleterious effects of scattering within a
foil.

The particle dynamics is analyzed in two separate re-
gions: between two foils, which is assumed to be vacuum,
and within a perfectly conducting foil. Intra-beam scat-
tering is neglected. Within a foil, deflections of beam
ions due to the scattering with foil atoms are included in
the equations of motion using the results of Sec. II. A
static magnetic field can also be superimposed to improve
focusing as treated in Ref. [1].

Between two foils The beam charge density is as-
sumed to be axisymmetric, and the foils are assumed
to be transversely homogenous, leading to axisymmetric
self-fields. The axial self-electric field, Ez(r, z), is ne-
glected. In the paraxial approximation (v = ẑβbc+ δv '
ẑβbc), the single particle equation of motion between the
foils is

x′′⊥ '
q

mγbc2
∂φv
∂x⊥

− q

mγbβ2
b c

2

∂φg
∂x⊥

. (13)

Here, derivatives with respect to z are represented by
primes (′ = d/dz). The first term on the right-hand
side of Eq. (13) represents the self-magnetic focusing
contribution, and the second term corresponds to the
self-electric defocusing contribution.

Within a foil Because the foils are assumed to be per-
fect conductors, no electric field penetrates the foils. The
finite thickness of the foils induces Coulomb scattering
between beam ions and foil atoms. Therefore, beam ions
are both transversely deflected and lose kinetic energy on
the foils.

Knock-on electrons emitted from the foils[20] and their
effects on the dynamics of the beam ions are a topic for
further research. Knock-on electrons fill the gaps be-
tween the foils, and the subsequent current neutraliza-
tion is greater than the subsequent charge neutraliza-
tion as, by definition, the velocity of the knock-on elec-
trons is higher than the ion beam velocity. Knock-on
electrons could therefore mitigate the passive focusing
scheme. Nevertheless, the presence of knock-on electrons
does not confound the passive focusing in regimes where
the foil atoms and the beam ions are of low atomic num-
ber, where the beam kinetic energy is high, and where
the foils are thin. In this case, the number of generated
knock-on electrons would remain negligibly low according
to the Rutherford scattering model.

The ion beam kinetic energy Eb is no longer constant
and depends on the distance travelled within the foil and
the stopping power S of the foil material. Values of S are
found in tabulated data such as the PSTAR database[21].
Straggling is ignored here, where we consider transverse
dynamics. An analysis of straggling would be important
for substantial changes in mean beam energy or when
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FIG. 5: Stopping power S(Eb) of a proton in solid aluminum
(mass density ρ = 2.7g/cm3).

energy spread is important. The electric field vanishes in
the foil, and and terms representing energy loss and the
scattering-induced deflection of the particle are added.
The cumulative scattering-induced deflection of a single
particle trajectory is a stochastic process that depends on
the distance z travelled in the material and the material
properties. It is modeled by a Brownian noise w such
that for 0 ≤ z0 ≤ z ≤ ∆f , w(z) − w(z0) is a Gaussian
distributed variable with mean 0 and variance (z− z0)×
G2/E2

b (z) to have a form consistant with Eqs. (6) and (7).
The instantaneous scattering-induced deflection in the
particle equation of motion is therefore represented by
the white noise w′ which is the formal derivative of the
Brownian noise w. The equation of motion is then the
stochastic differential equation

x′′⊥ +
(γbβb)

′

(γbβb)
x′⊥ −

q

mγbc2
∂φv
∂x⊥

' w′, (14)

and includes the particle kinetic energy loss due to the
stopping power of the foil material E ′b = S(Eb) (see
Fig. 5), or equivalently

(γbβb)
′ =

S(Eb)
mc2βb

. (15)

The deceleration-induced term (γbβb)
′

(γbβb)
x′⊥ is derived in

Ref. [3].

D. Envelope equations

The statistical transverse envelope equations are
derived by taking the derivatives in z of σx(z)
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and the transverse rms emittance of the beam
εx,rms ≡

[
〈x2〉⊥〈x′2〉⊥ − 〈xx′〉2⊥

]1/2
, and then ap-

plying the particle equations between two foils and
within one foil. Because the beam is axisymmetric,
only the x-component of the beam envelope equation is
treated. This section extends the envelope formalism of
Ref. [1] to include additional effects due to scattering
within a foil.

Between two foils The beam envelope equation be-
tween two foils, derived in Ref. [1], is

d2

dz2
σx +

γ2
b

4

[
β2
b − F

] Q
σx
−
ε2
x,rms

σ3
x

= 0. (16)

The dimensionless perveance Q = qλb/(2πε0mγ
3
bβ

2
b c

2) is
constant[2, 3, 22]. It is assumed that, between the foils,
the nonlinear field effects are small and therefore εx,rms

is constant.

F = −4πε0
λ
〈r
∫ L/2

−L/2

dz

L

∂φg
∂r
〉⊥ (17)

is a dimensionless “form factor” that models the average
screening of the defocusing field due to the foils for
closely spaced foils (L � ρ(∂ρ/∂z)−1) as the beam
ions cannot rapidly respond to fast variations of the
defocusing electric field between closely space foils (see
Ref. [1] for details). Scattering does not change this
result as it does not happen between the foils. In
vacuum, F = 1 and the envelope equation reduces to
the familiar vacuum form[1]. The form factor F ∈ [0, 1]
can be effectively seen as an attenuation factor of the
defocusing electric field due to the foils.

Within a single foil In this paragraph, z = 0 is taken
at the middle of the foil and the foil domain in z is
[−∆f/2,∆f/2]. Equation (14) and the derivatives of

〈x2〉1/2⊥ in z yield the beam envelope equation within a
single foil.

d2

dz2
σx +

(γbβb)
′

(γbβb)

d

dz
〈xx′〉1/2⊥

+
γ2
b

4
β2
b

Q

σx
−
ε2
x,rms

σ3
x

=
〈xw′〉⊥
σx

.

(18)

Equation (18) differs from the beam envelope equation
between two foils, Eq. (16), by the absence of a defo-
cusing electric field, and the presence of scattering and
deceleration. Furthermore, the emittance is not con-
served because of both kinetic energy losses and cross-
terms between x, x′ and w′ due to scattering-induced
deflections. Differentiating ε2

x,rms with respect to z and
applying Eq. (14) yields

d

dz
ε2
x,rms = −2

(γbβb)
′

γbβb
ε2
x,rms+2σ2

x〈x′w′〉⊥−2〈xx′〉⊥〈xw′〉⊥.

(19)

In Appendix A, a detailed analysis of the cross-terms for
beam kinetic energy Eb leads to Eqs. (A10) and (A13),
and shows that 〈xw′〉⊥ = 0 and 〈x′w′〉⊥ = G2/(2E2

b ).
Using these results, Eq. (18) reduces to

d2

dz2
σx +

(γbβb)
′

γbβb

d

dz
〈xx′〉1/2⊥ +

γ2
b

4
β2
b

Q

σx
−
ε2
x,rms

σ3
x

= 0,

(20)
and Eq. (19) reduces to

d

dz
ε2
x,rms = −2

(γbβb)
′

γbβb
ε2
x,rms +

G2

E2
b

σ2
x. (21)

For a paraxial beam, angles of particle trajectories in
the foil are small and the total distance travelled by the
ions within the foil is, therefore, to first approximation,
∆f . The beam size can be approximated as constant
within an individual foil (σx = const) when the foils are
thin compared to transverse focal length. Then, the ki-
netic energy loss ∆Eb of the ion beam reduces to

∆Eb ' S(Eb(−∆f/2))∆f ' S(Eb)∆f . (22)

Generally, |∆Eb| � Eb, and the energy Eb can be assumed
constant within a single foil when computing quantities
that are functions of Eb because the higher-order induced
errors are small. The emittance evolution equation (19)
can then be integrated across a foil,

ε2
x,rms(∆f/2) = ε2

x,rms(−∆f/2) +

∫ ∆f/2

−∆f/2

dz
d

dz
ε2
x,rms(z)

' ε2
x,rms(−∆f/2)

+ ∆f

[
−2

(γbβb)
′

γbβb
ε2
x,rms +

G2

E2
b

σ2
x

]
z=−∆f/2

.

(23)
In Eq. (23), terms of order ∆2

f and higher are neglected.

Because the foils induce deceleration of the ions, (γbβb)
′

is negative, causing emittance growth. Because G is al-
ways positive, the scattering term also causes emittance
growth. Note that while the kinetic energy loss within
one foil is small compared to the kinetic energy of the
beam, the accumulated losses of kinetic energy due to
its propagation through a large number of foils can be
significant and should be accounted in the beam dynam-
ics. We employ the thin foil approximation and apply
Eqs. (22) and (23) in the following sections.

Note that, instead of our previously defined transverse
emittance, it is possible to use the normalize transverse
emittance as a measure of beam quality as it is a con-
served quantity under acceleration or deceleration. In
this case, an auxillary equation for γ′b[3] must be taken
into account.

E. Example: Application of the envelope model to
intense proton beams

We analyze a lens where thin foils of constant thick-
ness ∆f are stacked with constant foil spacing L. Mod-
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FIG. 6: (Color) Proton focusing efficiency η as a function of
foil thickness ∆f is computed for specified initial kinetic ener-
gies Eb. Green, cyan, blue, purple, pink, red colors represent
initial kinetic energies Eb = 15, 20, 25, 30, 40 and 50 MeV.

TABLE I: Minimum σx,min and corresponding z-location zmin

(effective focal length) for foil spacing L = 100 µm and ini-
tial kinetic energy Eb = 30 MeV for different foil thicknesses
∆f . Corresponding focusing efficiency η, kinetic energy Eb at
σx,min, and beam rms emittance growth ∆εx,rms at σx,min are
displayed for the 30 MeV initial beam shown in Fig. 6 and 7.

Foil Foil Spacing
Thickness L = 100µm
∆f σx,min η zmin Eb ∆εx,rms

(µm) (µm) (mm) (MeV) (mm mrad)
0 81.0 1 19.0 30 0
1.6 94.1 0.89 19.1 28.8 0.4
3.2 106.1 0.79 19.0 27.7 0.7
6.4 127.5 0.61 18.4 25.4 1.2
12.8 157.6 0.36 16.1 22.1 2.1

ulation of foil spacing L as a function of the beam ra-
dial size can optimize the focusing mechanism, but is
not treated here. The foil material is solid aluminum
(ρ = 2.7 g.cm−3, Zf = 13), with angular deflection coef-

ficient GSRIM = 9.8× 10−3 MeVµm−1/2 from Sec. II and
the stopping power S(Eb) extracted from Ref. [21]. Use
of conducting materials different from solid aluminum
results in a different deflection coefficient G that can be
recomputed using the methods of Sec. II, and a different
stopping power S(Eb). The continuous approximation of
the form factor F from Eq. (17) is used. No external
focusing system is employed. The ion beam is assumed
to have no angular momentum. Secondary electrons and
neutralizing plasma are neglected.

For efficient passive focusing, the beam must ideally
be high current and high energy consistently as ana-
lyzed in Sec. III D. For example, consider a proton beam
with a high perveance value of Q = 1.8 × 10−2 - e.g.
a mono-energetic 4.8 kA 30 MeV proton beam. Such
characteristics may be achievable in the near future by

laser-produced proton beams as the individual character-
istics can already be separately reached[10]. The initial
beam density is radially Gaussian with rms beam width
σx = 200 µm and zero divergence σ′x = 0. The foil spac-
ing is set to L = 100 µm and the foil thicknesses ∆f

range from 0 to 12.8 µm. The initial beam emittance
is εx,rms = 0.87 mm mrad. The emittance in this case
grows due to foil-induced scattering in the thin, but fi-
nite thickness foils. The finite foil thickness induces a
reduction of focusing that we quantify by the focusing
efficiency defined by

η(∆f ) =
σx,init − σx,min(∆f )

σx,init − σx,min(∆f = 0)
. (24)

Here, σx,init is the initial rms beam width. σx,min(∆f )
is the best focus for foils with thickness ∆f , occurring
at a distance zmin after the first foil. zmin is called the
effective focal length. The minimum beam rms width for
infinitely thin foils is σx,min(∆f = 0). This definition of
the focusing efficiency factor η is valid only when the foil
spacing is small enough to induce initial focusing. The
focusing efficiency η is desired to be as close as possible to
unity, corresponding to small defocusing degradation due
to scattering and energy losses. Mitigation of foil-induced
scattering can be achieved by reducing the foil thickness
∆f , the addition of an external focusing system, or using
higher initial beam energy Eb.

The dependence of the focusing efficiency η as a func-
tion of foil thickness ∆f for various initial proton kinetic
energies is shown in Fig. 6. The beam rms width σx,
emittance and energy for various foil thicknesses and an
initial beam kinetic energy Eb = 30 MeV are plotted in
Fig. 7. The plot of the beam rms width shows that, as
expected, thicker foils decrease the maximum beam fo-
cus, but are still preferable to the vacuum case where the
beam quickly expends. The plot of the axial beam ki-
netic energy Eb is consistant with the stopping power of
the employed tabulated PSTAR data in Ref [21]. Emit-
tance growth is observed in the plot of the beam emit-
tance. Table I summarizes the beam size and emittance
at maximum focusing for a variety of foil thicknesses.
Plots of particle-in-cell simulation results obtained from
WARP[17] (see Sec. IV) are also included in Figure 7.
The focusing efficiency is quickly reduced with thicker
foils, which moves the focal spot closer to the entrance
of the stack of the thin foils, reduces the beam kinetic
energy, and increases the beam emittance. The effects
are more deleterious for a beam with lower perveance
(i.e., less magnetic focusing) and lower energy (i.e. more
scattering and faster kinetic energy loss). For example, a
cold 10 MeV proton beam of perveance 8.14×10−3 would
have a focusing efficiency of 9 % for even an extremely
thin foil of thickness ∆f = 160 nm, which means that
passive focusing cannot effectively operate for such low
energy and low perveance beams. In order to achieve
a focusing efficiency of 70 % for such a beam, the foil
thickness would have to be about 24 nm. Nonetheless,
even though focusing cannot be achieved, the stack of
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FIG. 7: (Color) The evolution of rms beam width σx (a),
rms transverse emittance growth ∆εx,rms (b) and axial kinetic
energy Eb (c) as a function of z for foil spacing L = 100 µm
and foil thickness ∆f = 0, 1.6, 3.2, 6.4, 12.8 µm as labeled.
Quantities at the focal spot (z position of the smallest σx) are
summarized in Table. I. Dashed lines represent the envelope
model solutions. Solid lines represent WARP simulations.

foils strongly mitigates defocusing compared to vacuum
values (see Fig. 7). Results presented here help clarify
where idealized results from Ref. [1], in which scattering
and energy losses were neglected, can be reliably applied.

Since passive focusing is nonlinear (the focusing term
in the envelope equation is proportional to Q/σx in
contrast to solenoidal focusing that is linear, i.e. pro-
portional to κσx where κ is the applied focusing func-
tion), equivalence in terms of thin lens optics is not
possible. Therefore, as an approximate comparison be-
tween passive focusing and solenoidal focusing, we com-

pute the necessary solenoidal magnetic field to reach the
same minimum spot size σx,min provided by passive fo-
cusing. For the above-mentioned beam parameters, in
the absence of foils, a solenoidal magnetic field of 600
T would be required to reach the minimum spot size
σx,min = 157.6 µm that is provided by a stack of thin
foils of thickness ∆f = 12.8µm. This shows the ad-
vantage of foil focusing relative to vacuum focusing with
applied fields for the beam parameters examined here. In
optimized systems, it may be advantageous to use com-
bined solenoid and foil focusing, using fewer foils and the
solenoid strength where the beam is large, and more foils
as the beam focuses. This could partly mitigate scatter-
ing issues and give more system tunability. Note that,
while quadrupoles are also linear optics, their uses are
more even problematic. One could indeed superimpose
high gradient pulsed magnet quadrupole periodic lattices
to replace the solenoid focusing. Estimates show that for
an occupancy of 0.5 and the quadrupole length L = 2
mm (this short length is required for the effective focal
length zmin to be in the same range as the study above,
i.e. in the tens of mm range), the required magnetic gra-
dient is 6× 105 T/m, or, equivalently, a field of 30 T for
a radius of 50 µm. These are extreme fields. Alterna-
tively, to avoid those extreme fields, one could use up-
stream (non-immersed) quadrupole optics in a combined
type final focus using permanent magnets, but that also
introduces another issue regarding the behavior of elec-
trons respective to the dynamics of ions when entering
the quadrupoles.

IV. SIMULATIONS

The envelope model is compared to particle-in-cell sim-
ulations using the WARP code[17] in axisymmetric cylin-
drical (r-z) geometry with a regular grid. The basic simu-
lation model is also discussed in Ref. [1]; it is generalized
here to include scattering and energy loss effects. The
setup of the present simulations is similar to what was
referred as the ”infinite beam” simulation setup of Ref [1],
and agrees well with its analytical envelope model that
excludes scattering and energy loss effects. The domain
is bounded radially by the beam pipe at r = 1.2 mm and
axially by the ends of two adjacent foils, and contains by
64 radial grid cells and 8 axial grid cells. The boundary
conditions for macro-particles are absorbing in the r di-
rection and periodic in the z direction. This choice of
boundary conditions for particles speeds up the simula-
tion as particles exiting from the right end are reinjected
back into the domain from the left end with the same
velocity and the same transverse position. This bypasses
the need for much larger simulations of the whole stack of
thin foils and focuses on the beam dynamics between two
foils and within one foil. The electric field is calculated in
the electrostatic approximation with Dirichlet boundary
conditions in r and in z. The magnetic field is calcu-
lated in the magnetostatic approximation with Dirichlet
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boundary conditions in r and periodic boundary condi-
tions in z. Beam macro-particles are initially loaded with
regular spacing in the z direction.

In the r direction, the particles are loaded following an
initially axisymmetric Gaussian charge profile, chopped
at r = rmax = 3.5σb. The particles are spaced uniform
in R2 out to R = rb = 2σb, with R related to the actual
radius r by the relation

r = σx

√√√√−2 ln

[
1−

(
R

2rb

)2

N

]
. (25)

with N = 1− exp(−r2
max/(2σ

2
b )), a normalisation factor

due to the chopping (see Appendix B for details).
The rms transverse beam size σx is computed by aver-

aging over the full axial domain. Typically, 296 macro-
particles are loaded per particle-containing cell. These
simulated beam parameters are identical to the beam
parameters of the envelope model of Sec. III E for di-
rect comparison. Parametric numerical studies in the
absence of scattering showed that the grid resolution and
statistics were sufficient for well converged simulations[1].
Scattering and energy losses are not expected to change
requirements.

Scattering and energy loss options were added to the
modeling of foils in WARP. Foils are located at each
axial end of the domain and assumed to extend to the
radial boundaries. When a particle penetrate a foil,
the particle is given a random transverse kick that fol-
lows the normal distribution with mean 0 and vari-
ance 〈θ2

x〉 = G2
SRIM∆f/E2

b [see Eq (7)]. After scatter-
ing, the kinetic energy of the beam Eb is reduced by
∆Eb ' S(Eb(−∆f/2))∆f [see Eq. (22)].

Results of these simulations are shown in Fig. 7 and
agree reasonably well with the envelope results for the
axial kinetic energy Eb. The minor discrepancies between
the simulations and the envelope model are due to various
effects not included in the envelope model as mentioned
in Ref. [1]: (i) the radial density is evolving and does
not stay Gaussian, (ii) the electric field is not averaged
between the foil by using F , and (iii) emittance growth
due to the non-linear nature of the self-fields. Thicker
foils enhance these differences.

V. REMARKS

This paper generalized recent theory and simulation
models in Ref. [1] to include the degradation of beam
quality due to foil-induced scattering and energy loss in
passive focusing. This study shows that a higher beam
kinetic energy, a lower beam atomic number and/or foil
thickness are needed for optimal passive focusing using
a stack of thin foils. Extending the study to a larger
range of foil properties (e.g., with irregular spacing and
thickness, different shape, holes) would open possibilities
to optimized passive focusing systems for more complex

beams (e.g. with large energy spectrum, not initially
collimated, with co-moving and secondary elections).
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Appendix A: Calculation of the moments 〈xw′〉 and
〈x′w′〉 within metallic foils.

Consider Eq. (14) with constant kinetic energy (γbβb =
const) and in the x direction. By introducing K =

− q
mγbc2x

∂φv
∂x , a Hill’s equation with a stochastic term is

obtained,

x′′(z) +K(z)x(z) = w′(z), (A1)

where w′ is white noise that we model as a sum of discrete
kicks with

w′(z) =

n∑
i=1

∆iδ(z − zi). (A2)

Here, δ(z) is the Dirac delta function, zi is the axial po-
sition where the i’th transverse kick occurs, n is the to-
tal number of transverse kicks from the axial coordinate
−∆f/2 to z, and ∆i the amplitude of the i’th kick. From
Sec. II B, the kicks ∆i are normal distributed centered
on 0 with variance G2/E2

b (z)δz. Here δz is the mean free
path between two collisions. Between two kicks (i.e., for
any z 6= zi with i ∈ J1, nK), Eq. (A1) reduces to the
regular Hill’s equation,

x′′(z) +K(z)x(z) = 0. (A3)

The solution of the regular Hill’s equation, Eq. (A3), be-
tween the i’th kick and the (i+ 1)’th kick has the form

xi(z) = [Aifi(z−zi)+Bigi(z−zi)][H(z−zi)−H(z−zi+1)].
(A4)

Here, Ai and Bi are constants that depend on the initial
conditions, Ci and Si are cosine-like and sine-like func-
tions satisfying Eq. (A3) with initial conditions Ci(0) =
1, C ′i(0) = 0, Si(0) = 0, S′i(0) = 1, and H is a ”step”
function defined such that

H(z) =


1, z > 0
1
2 , z = 0

0, z < 0.

(A5)

The general solution of Eq. (A1) can be expressed as

x(z) =

n∑
i=0

xi(z). (A6)
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Consider a particle with initial conditions x(z0) = x0

and x′(z0) = x′0 where z0 = −∆f/2. This sets A0 = x0,
B0 = x′0. Note that zi > zi−1 for i > 0. Then, the
following equations recursively hold for any i > 0:

Ai = Ai−1Ci−1(zi − zi−1) +Bi−1Si−1(zi − zi−1),

Bi = Ai−1C
′
i−1(zi − zi−1) +Bi−1S

′
i−1(zi − zi−1) + ∆i.

(A7)
It can be shown that, for any i > 1,

Ai = Ai +

i−1∑
j=1

Ci,j∆j ,

Bi = Bi +

i−1∑
j=1

Di,j∆j + ∆i,

(A8)

where Ai, Bi, Ci,j , Di,j are constants that depend solely
on A0, B0, and Ci, C

′
i, Si, S

′
i evaluated at zi and zi−1.

Their explicit evaluation is not necessary in our analysis.
We can now compute 〈xw′〉 and 〈x′w′〉 within the

metallic foil. Applying Eq. (A2), Eq. (A4), and Eq. (A8),
we first calculate

〈xw′〉(z) =〈
n∑
i=1

n∑
k=1

∆k(Aifi(zk − zi) +Bigi(zk − zi))

× (H(zk − zi)−H(zk − zi+1))δ(z − zk)〉

=〈1
2

n∑
i=1

∆iδ(z − zi)(Ai +

i−1∑
j=1

Ci,j∆j)〉.

(A9)
Because the ∆i are isotropically distributed, we have

〈
n∑
i=1

∆iδ(z − zi)Ai〉 = 0, 〈
n∑
i=1

∆iδ(z − zi)
i−1∑
j=1

Ci,j∆j〉 = 0.

In this result, note that for j < i, ∆i 6= ∆j and all terms
in the average vanish because there is no quadratic terms
in ∆2

i in the sums. Together, these results show that

〈xw′〉(z) = 0. (A10)

Similarly, we compute 〈x′w′〉 within a metallic foil,

〈x′w′〉(z) =〈
n∑
i=1

n∑
k=1

∆k(Aif
′
i(zk − zi) +Big

′
i(zk − zi))

× (H(zk − zi)−H(zk − zi+1))δ(z − zk)〉

=〈1
2

n∑
i=1

∆2
i δ(z − zi)〉.

(A11)

〈
n∑
i=1

∆2
i δ(z−zi)〉 in Eq. (A11) is approximated by averag-

ing it over a mean free path δz. Because the ∆i are nor-
mal distributed centered on 0 with variance G2/E2

b (z)δz,

carrying out this average gives

〈
n∑
i=1

∆2
i δ(z − zi)〉 '

1

δz

∫ z+ δz
2

z− δz2
dz 〈

n∑
i=1

∆2
i δ(z − zi)〉

' 1

δz
〈∆2

n〉

' G2

E2
b

,

(A12)
resulting in

〈x′w′〉(z) =
1

2

G2

E2
b

. (A13)

Appendix B: Loading in the radial direction of a
beam with a radial Gaussian profile on a the (r-z

grid)

Transversely, the beam macro-particles are initially
loaded as if the beam radial distribution is axisymmetri-
cally uniform, following the uniform beam radial density

ρb,uni(R) =

{
λ
π

1
r2b
, 0 ≤ R ≤ rb,

0, rb < R.
(B1)

The number of particles therefore scales as R2 in the (R-
z) grid. Then, the radial coordinate R of each of the
macro-particles is mapped to the new coordinate r to
obtain a Gaussian distribution in the physical (r-z) grid
chopped at r = rmax using the formula∫ r

0

ρb,gau(r̃)2πr̃dr̃ =

∫ R

0

ρb,uni(R̃)2πR̃dR̃ (B2)

where

ρb,gau(r) =

{
λ
π

1
2σ2
b

[
exp

(
− r2

2σ2
b

)
/N
]
, 0 ≤ r ≤ rmax,

0, rmax < r

(B3)
is the Gaussian radial density chopped at rmax. N =
1−exp(−r2

max/(2σ
2
b )) is a normalisation factor to account

for the chopping. Eq. (B2) yields an explicit expression
for

r = σx

√√√√−2 ln

[
1−

(
R

2rb

)2

N

]
. (B4)

Note that rb = 2σb as both values are rms-equivalent
beam radii[1].
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